Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1378610, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638436

RESUMO

Influenza A virus (IAV) infection in pregnancy resembles a preeclamptic phenotype characterised by vascular dysfunction and foetal growth retardation. Given that low dose aspirin (ASA) is safe in pregnancy and is used to prevent preeclampsia, we investigated whether ASA or NO-conjugated aspirin, NCX4016, resolve vascular inflammation and function to improve offspring outcomes following IAV infection in pregnant mice. Pregnant mice were intranasally infected with a mouse adapted IAV strain (Hkx31; 104 plaque forming units) and received daily treatments with either 200µg/kg ASA or NCX4016 via oral gavage. Mice were then culled and the maternal lungs and aortas collected for qPCR analysis, and wire myography was performed on aortic rings to assess endothelial and vascular smooth muscle functionality. Pup and placentas were weighed and pup growth rates and survival assessed. IAV infected mice had an impaired endothelial dependent relaxation response to ACh in the aorta, which was prevented by ASA and NCX4016 treatment. ASA and NCX4016 treatment prevented IAV dissemination and inflammation of the aorta as well as improving the pup placental ratios in utero, survival and growth rates at post-natal day 5. Low dose ASA is safe to use during pregnancy for preeclampsia and this study demonstrates that ASA may prove a promising treatment for averting the significant vascular complications associated with influenza infection during pregnancy.


Assuntos
Aspirina/análogos & derivados , Vírus da Influenza A , Influenza Humana , Nitratos , Pré-Eclâmpsia , Doenças Vasculares , Humanos , Camundongos , Feminino , Gravidez , Animais , Placenta , Aspirina/farmacologia , Inflamação , Aorta
2.
Cells ; 13(1)2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38201300

RESUMO

Prostate cancer is ranked second in the world for cancer-related deaths in men, highlighting the lack of effective therapies for advanced-stage disease. Toll-like receptors (TLRs) and immunity have a direct role in prostate cancer pathogenesis, but TLR9 has been reported to contribute to both the progression and inhibition of prostate tumorigenesis. To further understand this apparent disparity, we have investigated the effect of TLR9 stimulation on prostate cancer progression in an immune-competent, syngeneic orthotopic mouse model of prostate cancer. Here, we utilized the class B synthetic agonist CPG-1668 to provoke a TLR9-mediated systemic immune response and demonstrate a significant impairment of prostate tumorigenesis. Untreated tumors contained a high abundance of immune-cell infiltrates. However, pharmacological activation of TLR9 resulted in smaller tumors containing significantly fewer M1 macrophages and T cells. TLR9 stimulation of tumor cells in vitro had no effect on cell viability or its downstream transcriptional targets, whereas stimulation in macrophages suppressed cancer cell growth via type I IFN. This suggests that the antitumorigenic effects of CPG-1668 were predominantly mediated by an antitumor immune response. This study demonstrated that systemic TLR9 stimulation negatively regulates prostate cancer tumorigenesis and highlights TLR9 agonists as a useful therapeutic for the treatment of prostate cancer.


Assuntos
Neoplasias da Próstata , Receptor Toll-Like 9 , Humanos , Masculino , Animais , Camundongos , Neoplasias da Próstata/tratamento farmacológico , Carcinogênese , Próstata , Transformação Celular Neoplásica
3.
Front Immunol ; 14: 1240552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795093

RESUMO

Respiratory syncytial virus (RSV) commonly infects the upper respiratory tract (URT) of humans, manifesting with mild cold or flu-like symptoms. However, in infants and the elderly, severe disease of the lower respiratory tract (LRT) often occurs and can develop into chronic airway disease. A better understanding of how an acute RSV infection transitions to a LRT chronic inflammatory disease is critically important to improve patient care and long-term health outcomes. To model acute and chronic phases of the disease, we infected wild-type C57BL/6 and toll-like receptor 7 knockout (TLR7 KO) mice with RSV and temporally assessed nasal, airway and lung inflammation for up to 42 days post-infection. We show that TLR7 reduced viral titers in the URT during acute infection but promoted pronounced pathogenic and chronic airway inflammation and hyperreactivity in the LRT. This study defines a hitherto unappreciated molecular mechanism of lower respiratory pathogenesis to RSV, highlighting the potential of TLR7 modulation to constrain RSV pathology to the URT.


Assuntos
Asma , Infecções por Vírus Respiratório Sincicial , Receptor 7 Toll-Like , Animais , Camundongos , Brônquios/patologia , Inflamação/patologia , Camundongos Endogâmicos C57BL , Receptor 7 Toll-Like/genética , Camundongos Knockout
4.
Nat Struct Mol Biol ; 30(9): 1265-1274, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524969

RESUMO

The inhibitor of apoptosis protein BIRC2 regulates fundamental cell death and survival signaling pathways. Here we show that BIRC2 accumulates in the nucleus via binding of its second and third BIR domains, BIRC2BIR2 and BIRC2BIR3, to the histone H3 tail and report the structure of the BIRC2BIR3-H3 complex. RNA-seq analysis reveals that the genes involved in interferon and defense response signaling and cell-cycle regulation are most affected by depletion of BIRC2. Overexpression of BIRC2 delays DNA damage repair and recovery of the cell-cycle progression. We describe the structural mechanism for targeting of BIRC2BIR3 by a potent but biochemically uncharacterized small molecule inhibitor LCL161 and demonstrate that LCL161 disrupts the association of endogenous BIRC2 with H3 and stimulates cell death in cancer cells. We further show that LCL161 mediates degradation of BIRC2 in human immunodeficiency virus type 1-infected human CD4+ T cells. Our findings provide mechanistic insights into the nuclear accumulation of and blocking BIRC2.


Assuntos
Proteínas Inibidoras de Apoptose , Tiazóis , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Apoptose/genética , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Am J Physiol Gastrointest Liver Physiol ; 325(3): G230-G238, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37431584

RESUMO

Maternal influenza A virus (IAV) infection during pregnancy can affect offspring immune programming and development. Offspring born from influenza-infected mothers are at increased risk of neurodevelopmental disorders and have impaired respiratory mucosal immunity against pathogens. The gut-associated lymphoid tissue (GALT) represents a large proportion of the immune system in the body and plays an important role in gastrointestinal (GI) homeostasis. This includes immune modulation to antigens derived from food or microbes, gut microbiota composition, and gut-brain axis signaling. Therefore, in this study, we investigated the effect of maternal IAV infection on mucosal immunity of the GI tract in the offspring. There were no major anatomical changes to the gastrointestinal tract of offspring born to influenza-infected dams. In contrast, maternal IAV did affect the mucosal immunity of offspring, showing regional differences in immune cell profiles within distinct GALT. Neutrophils, monocytes/macrophages, CD4+ and CD8+ T cells infiltration was increased in the cecal patch offspring from IAV-infected dams. In the Peyer's patches, only activated CD4+ T cells were increased in IAV offspring. IL-6 gene expression was also elevated in the cecal patch but not in the Peyer's patches of IAV offspring. These findings suggest that maternal IAV infection perturbs homeostatic mucosal immunity in the offspring gastrointestinal tract. This could have profound ramifications on the gut-brain axis and mucosal immunity in the lungs leading to increased susceptibility to respiratory infections and neurological disorders in the offspring later in life.NEW & NOTEWORTHY Influenza A virus (IAV) infection during pregnancy is associated with changes in gut-associated lymphoid tissue (GALT) in the offspring in a region-dependent manner. Neutrophils and monocytes/macrophages were elevated in the cecal patch of offspring from infected dams. This increase in innate immune cell infiltration was not observed in the Peyer's patches. T cells were also elevated in the cecal patch but not in the Peyer's patches.


Assuntos
Vírus da Influenza A , Influenza Humana , Gravidez , Feminino , Camundongos , Animais , Humanos , Nódulos Linfáticos Agregados , Imunidade nas Mucosas , Linfócitos T CD8-Positivos
6.
Antioxidants (Basel) ; 11(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36009206

RESUMO

Macrophages undergo a metabolic switch from oxidative phosphorylation to glycolysis when exposed to gram-negative bacterial lipopolysaccharide (LPS), which modulates antibacterial host defence mechanisms. Here, we show that LPS treatment of macrophages increased the classical oxidative burst response via the NADPH oxidase (NOX) 2 enzyme, which was blocked by 2-deoxyglucose (2-DG) inhibition of glycolysis. The inhibition of the pentose phosphate pathway with 6-aminonicotinamide (6-AN) also suppressed the LPS-induced increase in NOX2 activity and was associated with a significant reduction in the mRNA expression of NOX2 and its organizer protein p47phox. Notably, the LPS-dependent enhancement in NOX2 oxidase activity was independent of both succinate and mitochondrial reactive oxygen species (ROS) production. LPS also increased type I IFN-ß expression, which was suppressed by 2-DG and 6-AN and, therefore, is dependent on glycolysis and the pentose phosphate pathway. The type I IFN-ß response to LPS was also inhibited by apocynin pre-treatment, suggesting that NOX2-derived ROS promotes the TLR4-induced response to LPS. Moreover, recombinant IFN-ß increased NOX2 oxidase-dependent ROS production, as well as NOX2 and p47phox expression. Our findings identify a previously undescribed molecular mechanism where both glycolysis and the pentose phosphate pathway are required to promote LPS-induced inflammation in macrophages.

7.
Front Pharmacol ; 13: 870156, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401240

RESUMO

There is an urgent need to develop effective therapeutic strategies including immunomodulators to combat influenza A virus (IAV) infection. Influenza A viruses increase ROS production, which suppress anti-viral responses and contribute to pathological inflammation and morbidity. Two major cellular sites of ROS production are endosomes via the NOX2-oxidase enzyme and the electron transport chain in mitochondria. Here we examined the effect of administration of Cgp91ds-TAT, an endosome-targeted NOX2 oxidase inhibitor, in combination with mitoTEMPO, a mitochondrial ROS scavenger and compared it to monotherapy treatment during an established IAV infection. Mice were infected with IAV (Hkx31 strain; 104PFU/mouse) and 24 h post infection were treated with Cgp91ds-TAT (0.2 mg/kg), mitoTEMPO (100 µg) or with a combination of these inhibitors [Cgp91ds-TAT (0.2 mg/kg)/mitoTEMPO (100 µg)] intranasally every day for up to 2 days post infection (pi). Mice were euthanized on Days 3 or 6 post infection for analyses of disease severity. A combination of Cgp91ds-TAT and mitoTEMPO treatment was more effective than the ROS inhibitors alone at reducing airway and neutrophilic inflammation, bodyweight loss, lung oedema and improved the lung pathology with a reduction in alveolitis following IAV infection. Dual ROS inhibition also caused a significant elevation in Type I IFN expression at the early phase of infection (day 3 pi), however, this response was suppressed at the later phase of infection (day 6 pi). Furthermore, combined treatment with Cgp91ds-TAT and mitoTEMPO resulted in an increase in IAV-specific CD8+ T cells in the lungs. In conclusion, this study demonstrates that the reduction of ROS production in two major subcellular sites, i.e. endosomes and mitochondria, by intranasal delivery of a combination of Cgp91ds-TAT and mitoTEMPO, suppresses the severity of influenza infection and highlights a novel immunomodulatory approach for IAV disease management.

8.
Clin Exp Metastasis ; 38(5): 441-449, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34398333

RESUMO

Osteosarcoma is the most common form of primary bone cancer and frequently metastasizes to the lungs. Current therapies fail to successfully treat over two thirds of patients with metastatic osteosarcoma, so there is an urgent imperative to develop therapies that effectively target established metastases. Smac mimetics are drugs that work by inhibiting the pro-survival activity of IAP proteins such as cIAP1 and cIAP2, which can be overexpressed in osteosarcomas. In vitro, osteosarcoma cells are sensitive to a range of Smac mimetics in combination with TNFα. This sensitivity has also been demonstrated in vivo using the Smac mimetic LCL161, which inhibited the growth of subcutaneous and intramuscular osteosarcomas. Here, we evaluated the efficacy of LCL161 using mice bearing osteosarcoma metastases without the presence of a primary tumor, modeling the scenario in which a patient's primary tumor had been surgically removed. We demonstrated the ability of LCL161 as a single agent and in combination with doxorubicin to inhibit the growth of, and in some cases eliminate, established pulmonary osteosarcoma metastases in vivo. Resected lung metastases from treated and untreated mice remained sensitive to LCL161 in combination with TNFα ex vivo. This suggested that there was little to no acquired resistance to LCL161 treatment in surviving osteosarcoma cells and implied that tumor microenvironmental factors underlie the observed variation in responses to LCL161.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Pulmonares/secundário , Osteossarcoma/secundário , Tiazóis/uso terapêutico , Animais , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Osteossarcoma/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200309

RESUMO

Many human cancers exhibit defects in key DNA damage response elements that can render tumors insensitive to the cell death-promoting properties of DNA-damaging therapies. Using agents that directly induce apoptosis by targeting apoptotic components, rather than relying on DNA damage to indirectly stimulate apoptosis of cancer cells, may overcome classical blocks exploited by cancer cells to evade apoptotic cell death. However, there is increasing evidence that cells surviving sublethal exposure to classical apoptotic signaling may recover with newly acquired genomic changes which may have oncogenic potential, and so could theoretically spur the development of subsequent cancers in cured patients. Encouragingly, cells surviving sublethal necroptotic signaling did not acquire mutations, suggesting that necroptosis-inducing anti-cancer drugs may be less likely to trigger therapy-related cancers. We are yet to develop effective direct inducers of other cell death pathways, and as such, data regarding the consequences of cells surviving sublethal stimulation of those pathways are still emerging. This review details the currently known mutagenic consequences of cells surviving different cell death signaling pathways, with implications for potential oncogenic transformation. Understanding the mechanisms of mutagenesis associated (or not) with various cell death pathways will guide us in the development of future therapeutics to minimize therapy-related side effects associated with DNA damage.


Assuntos
Morte Celular , Dano ao DNA , Mutagênese , Mutação , Neoplasias/patologia , Animais , Humanos , Neoplasias/etiologia
10.
Cell Death Dis ; 11(8): 680, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32826875

RESUMO

Most anticancer drugs provoke apoptotic signaling by damaging DNA or other means. Genotoxic therapies may enhance a patient's risk of developing "therapy-related cancers" due to the accumulation of oncogenic mutations that may occur in noncancerous cells. Mutations can also form upon apoptotic signaling due to sublethal caspase activity, implying that apoptosis activating drugs may also be oncogenic. Necroptosis is a different way of killing cancer cells: this version of caspase-independent cell death is characterized by receptor-interacting protein kinase-3 (RIPK3) and mixed lineage kinase-like domain protein (MLKL) activation, leading to cell membrane rupture and controlled cell lysis. The mutagenic potential of sublethal necroptotic signaling has not yet been directly investigated. Smac mimetics drugs, which activate apoptotic or necroptotic cell death, do not induce mutations but the mechanistic basis for this lack of mutagenic activity has not been determined. In this study, we compared the mutagenic potential of these two cell death pathways by engineering cells to activate either apoptotic or necroptotic signaling by exposing them to Smac mimetics with or without TNFα, and/or enforcing or preventing expression of apoptotic or necroptotic regulators. We discovered that sublethal concentrations of Smac mimetics in contexts that activated apoptotic signaling provoked DNA damage and mutations in surviving cells. Mutagenesis was dependent on executioner caspase activation of the nuclease CAD. In contrast, RIPK3- and MLKL-dependent necroptotic signaling following Smac mimetic treatment was not mutagenic. Likewise, DNA damage was not provoked in cells expressing a lethal constitutively active MLKL mutant. These data reveal that cells surviving sublethal necroptotic signaling do not sustain genomic damage and provide hope for a reduced risk of therapy-related malignancies in patients treated with necroptosis-inducing drugs.


Assuntos
Dano ao DNA/genética , Hipoxantina Fosforribosiltransferase/genética , Mutação/genética , Necroptose/genética , Transdução de Sinais , Animais , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Camundongos , Mutagênese/genética , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Serpinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiazóis/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Células U937 , Proteínas Virais/metabolismo
11.
Mol Biol Rep ; 47(6): 4849-4856, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32424523

RESUMO

High throughput cell viability screening assays often capitalize on the ability of active enzymes or molecules within viable cells to catalyze a quantifiable chemical reaction. The tetrazolium reduction (MTT) assay relies on oxidoreductases to reduce tetrazolium into purple formazan crystals that are solubilized so absorbance reflects viability, while other assays use cellular ATP to catalyze a luminescence-emitting reaction. It is therefore important to know how accurately these assays report cellular responses, as cytotoxic anti-cancer agents promote cell death via a variety of signaling pathways, some of which may alter how these assays work. In this study, we compared the magnitude of cytotoxicity to different cell types provoked by currently used anti-cancer agents, using three different cell viability assays. We found the three assays were consistent in reporting the viability of cells treated with chemotherapy drugs or the BH3 mimetic navitoclax, but the MTT assay underreported the killing capacity of proteasome inhibitors. Additionally, the MTT assay failed to confirm the induction of caspase-mediated cell death by bortezomib at physiologically relevant concentrations, thereby mischaracterizing the mode of cell death. While the cell viability assays used allow for the rapid identification of novel cytotoxic compounds, our study emphasizes the importance for these screening assays to be complemented with a direct measure of cell death or another independent measure of cell viability. We caution researchers against using MTT assays for monitoring cytotoxicity induced by proteasome inhibitors.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , NADH Tetrazólio Redutase/metabolismo , Sais de Tetrazólio/metabolismo , Antineoplásicos/farmacologia , Bioensaio , Caspases/metabolismo , Catálise , Morte Celular/efeitos dos fármacos , Formazans/química , Formazans/farmacologia , Humanos , Inibidores de Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Sais de Tetrazólio/química , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia
12.
Apoptosis ; 25(7-8): 500-518, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32440848

RESUMO

Smac mimetics, or IAP antagonists, are a class of drugs currently being evaluated as anti-cancer therapeutics. These agents antagonize IAP proteins, including cIAP1/2 and XIAP, to induce cell death via apoptotic or, upon caspase-8 deficiency, necroptotic cell death pathways. Many cancer cells are unresponsive to Smac mimetic treatment as a single agent but can be sensitized to killing in the presence of the cytokine TNFα, provided either exogenously or via autocrine production. We found that high concentrations of a subset of Smac mimetics could provoke death in cells that did not produce TNFα, despite sensitization at lower concentrations by TNFα. The ability of these drugs to kill did not correlate with valency. These cells remained responsive to the lethal effects of Smac mimetics at high concentrations despite genetic or pharmacological impairments in apoptotic, necroptotic, pyroptotic, autophagic and ferroptotic cell death pathways. Analysis of dying cells revealed necrotic morphology, which was accompanied by the release of lactate dehydrogenase and cell membrane rupture without prior phosphatidylserine exposure implying cell lysis, which occurred over a several hours. Our study reveals that cells incapable of autocrine TNFα production are sensitive to some Smac mimetic compounds when used at high concentrations, and this exposure elicits a lytic cell death phenotype that occurs via a mechanism not requiring apoptotic caspases or necroptotic effectors RIPK3 or MLKL. These data reveal the possibility that non-canonical cell death pathways can be triggered by these drugs when applied at high concentrations.


Assuntos
Antineoplásicos/farmacologia , Azocinas/farmacologia , Compostos Benzidrílicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Dipeptídeos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Indóis/farmacologia , Oligopeptídeos/farmacologia , Triazóis/farmacologia , Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Linhagem Celular Tumoral , Cicloexilaminas/farmacologia , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Humanos , Imidazóis/farmacologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mimetismo Molecular , Necroptose/efeitos dos fármacos , Necroptose/genética , Fenilenodiaminas/farmacologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia
13.
Cancers (Basel) ; 12(5)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403415

RESUMO

Osteosarcoma is the most common form of primary bone cancer. Over 20% of osteosarcoma patients present with pulmonary metastases at diagnosis, and nearly 70% of these patients fail to respond to treatment. Previous work revealed that human and canine osteosarcoma cell lines are extremely sensitive to the therapeutic proteasome inhibitor bortezomib in vitro. However, bortezomib has proven disappointingly ineffective against solid tumors including sarcomas in animal experiments and clinical trials. Poor tumor penetration has been speculated to account for the inconsistency between in vitro and in vivo responses of solid tumors to bortezomib. Here we show that the second-generation proteasome inhibitor ixazomib, which reportedly has enhanced solid tumor penetration compared to bortezomib, is toxic to human and canine osteosarcoma cells in vitro. We used experimental osteosarcoma metastasis models to compare the efficacies of ixazomib and bortezomib against primary tumors and metastases derived from luciferase-expressing KRIB or 143B human osteosarcoma cell lines in athymic mice. Neither proteasome inhibitor reduced the growth of primary intramuscular KRIB tumors, however both drugs inhibited the growth of established pulmonary metastases created via intravenous inoculation with KRIB cells, which were significantly better vascularized than the primary tumors. Only ixazomib slowed metastases from KRIB primary tumors and inhibited the growth of 143B pulmonary and abdominal metastases, significantly enhancing the survival of mice intravenously injected with 143B cells. Taken together, these results suggest ixazomib exerts better single agent activity against osteosarcoma metastases than bortezomib. These data provide hope that incorporation of ixazomib, or other proteasome inhibitors that penetrate efficiently into solid tumors, into current regimens may improve outcomes for patients diagnosed with metastatic osteosarcoma.

14.
J Adolesc Young Adult Oncol ; 9(6): 667-671, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32397787

RESUMO

Two thirds of metastatic osteosarcoma patients die within 5 years of diagnosis. Improved experimental models of osteosarcoma metastasis will facilitate the development of more effective therapies. Intravenous cancer cell injection can produce lung metastases in nude mice, but this "experimental metastasis" technique has been predominantly applied to a single osteosarcoma cell line (143B) and required injection of 1-2 million cells. Using two human osteosarcoma cell lines, we discovered that transient Natural Killer cell depletion dramatically enhanced the efficiency of experimental pulmonary osteosarcoma metastasis. This technique for modeling osteosarcoma metastasis may enable the identification of better treatments for this aggressive cancer.


Assuntos
Células Matadoras Naturais/metabolismo , Neoplasias Pulmonares/secundário , Osteossarcoma/terapia , Administração Intravenosa , Animais , Feminino , Camundongos , Camundongos Nus
15.
Cell Rep ; 29(7): 1821-1831.e3, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31722200

RESUMO

Billions of cells undergo apoptosis daily and often fragment into small, membrane-bound extracellular vesicles termed apoptotic bodies (ApoBDs). We demonstrate that apoptotic monocytes undergo a highly coordinated disassembly process and form long, beaded protrusions (coined as beaded apoptopodia), which fragment to release ApoBDs. Here, we find that the protein plexin B2 (PlexB2), a transmembrane receptor that regulates axonal guidance in neurons, is enriched in the ApoBDs of THP1 monocytes and is a caspase 3/7 substrate. To determine whether PlexB2 is involved in the disassembly of apoptotic monocytes, we generate PlexB2-deficient THP1 monocytes and demonstrate that lack of PlexB2 impairs the formation of beaded apoptopodia and ApoBDs. Consequently, the loss of PlexB2 in apoptotic THP1 monocytes impairs their uptake by both professional and non-professional phagocytes. Altogether, these data identify PlexB2 as a positive regulator of apoptotic monocyte disassembly and demonstrate the importance of this process in apoptotic cell clearance.


Assuntos
Apoptose , Monócitos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células A549 , Animais , Células HeLa , Humanos , Camundongos , Monócitos/citologia , Proteínas do Tecido Nervoso/genética , Células THP-1
16.
Biochem J ; 476(9): 1335-1357, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30992316

RESUMO

Poxviruses encode many proteins that enable them to evade host anti-viral defense mechanisms. Spi-2 proteins, including Cowpox virus CrmA, suppress anti-viral immune responses and contribute to poxviral pathogenesis and lethality. These proteins are 'serpin' protease inhibitors, which function via a pseudosubstrate mechanism involving initial interactions between the protease and a cleavage site within the serpin. A conformational change within the serpin interrupts the cleavage reaction, deforming the protease active site and preventing dissociation. Spi-2 proteins like CrmA potently inhibit caspases-1, -4 and -5, which produce proinflammatory cytokines, and caspase-8, which facilitates cytotoxic lymphocyte-mediated target cell death. It is not clear whether both of these functions are equally perilous for the virus, or whether only one must be suppressed for poxviral infectivity and spread but the other is coincidently inhibited merely because these caspases are biochemically similar. We compared the caspase specificity of CrmA to three orthologs from orthopoxviruses and four from more distant chordopoxviruses. All potently blocked caspases-1, -4, -5 and -8 activity but exhibited negligible inhibition of caspases-2, -3 and -6. The orthologs differed markedly in their propensity to inhibit non-mammalian caspases. We determined the specificity of CrmA mutants bearing various residues in positions P4, P3 and P2 of the cleavage site. Almost all variants retained the ability to inhibit caspase-1, but many lacked caspase-8 inhibitory activity. The retention of Spi-2 proteins' caspase-8 specificity during chordopoxvirus evolution, despite this function being readily lost through cleavage site mutagenesis, suggests that caspase-8 inhibition is crucial for poxviral pathogenesis and spread.


Assuntos
Caspase 1 , Caspase 8 , Vírus da Varíola Bovina , Proteólise , Serpinas , Proteínas Virais , Caspase 1/química , Caspase 1/genética , Caspase 1/metabolismo , Caspase 8/química , Caspase 8/genética , Caspase 8/metabolismo , Linhagem Celular , Vírus da Varíola Bovina/química , Vírus da Varíola Bovina/genética , Vírus da Varíola Bovina/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Serpinas/química , Serpinas/genética , Serpinas/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
17.
Apoptosis ; 24(5-6): 404-413, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30997620

RESUMO

Genotoxic anti-cancer therapies such as chemotherapy and radiotherapy can contribute to an increase in second malignancies in cancer survivors due to their oncogenic effects on non-cancerous cells. Inhibition of histone deacetylase (HDAC) proteins or the proteasome differ from chemotherapy in that they eliminate cancer cells by regulating gene expression or cellular protein equilibrium, respectively. As members of these drug classes have been approved for clinical use in recent times, we investigated whether these two drug classes exhibit similar mutagenic capabilities as chemotherapy. The HDAC inhibitors vorinostat/SAHA and romidepsin/FK288 were found to induce DNA damage, and mis-repair of this damage manifested into mutations in clonogenically viable surviving cells. DNA damage and mutations were also detected in cells treated with the proteasome inhibitor bortezomib. Exposure to both drug classes stimulated caspase activation consistent with apoptotic cell death. Inhibition of caspases protected cells from bortezomib-induced acute (but not clonogenic) death and mutagenesis, implying caspases were required for the mutagenic action of bortezomib. This was also observed for second generation proteasome inhibitors. Cells deficient in caspase-activated DNase (CAD) also failed to acquire DNA damage or mutations following treatment with bortezomib. Surprisingly, vorinostat and romidepsin maintained an equivalent level of killing and mutagenic ability regardless of caspase or CAD activity. Our findings indicate that both drug classes harbour mutagenic potential in vitro. If recapitulated in vivo, the mutagenicity of these agents may influence the treatment of cancer patients who are more susceptible to oncogenic mutations due to dysfunctional DNA repair pathways.


Assuntos
Caspases/metabolismo , Desoxirribonucleases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Mutação/efeitos dos fármacos , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Inibidores de Proteassoma/farmacologia , Apoptose/efeitos dos fármacos , Bortezomib/farmacologia , Inibidores de Caspase/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Desoxirribonucleases/deficiência , Depsipeptídeos/farmacologia , Humanos , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/microbiologia , Mutagênese , Proteínas de Ligação a Poli-ADP-Ribose/deficiência , Transdução de Sinais/efeitos dos fármacos , Vorinostat/farmacologia
18.
Sci Rep ; 8(1): 14421, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258062

RESUMO

DNA damaging therapies can spur the formation of therapy-related cancers, due to mis-repair of lesions they create in non-cancerous cells. This risk may be amplified in patients with impaired DNA damage responses. We disabled key DNA damage response pathways using genetic and pharmacological approaches, and assessed the impact of these deficiencies on the mutagenicity of chemotherapy drugs or the "Smac mimetic" GDC-0152, which kills tumor cells by targeting XIAP, cIAP1 and 2. Doxorubicin and cisplatin provoked mutations in more surviving cells deficient in ATM, p53 or the homologous recombination effector RAD51 than in wild type cells, but suppressing non-homologous end joining (NHEJ) by disabling DNA-PKcs prevented chemotherapy-induced mutagenesis. Vincristine-induced mutagenesis required p53 and DNA-PKcs but was not affected by ATM status, consistent with it provoking ATM-independent p53-mediated activation of caspases and CAD, which creates DNA lesions in surviving cells that could be mis-repaired by NHEJ. Encouragingly, GDC-0152 failed to stimulate mutations in cells with proficient or defective DNA damage response pathways. This study highlights the elevated oncogenic risk associated with treating DNA repair-deficient patients with genotoxic anti-cancer therapies, and suggests a potential advantage for Smac mimetic drugs over traditional therapies: a reduced risk of therapy-related cancers.


Assuntos
Materiais Biomiméticos/farmacologia , Cicloexanos/farmacologia , Dano ao DNA , Sistemas de Liberação de Medicamentos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Mitocondriais , Proteínas de Neoplasias , Neoplasias , Pirróis/farmacologia , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Células HEK293 , Humanos , Mutagênese/efeitos dos fármacos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia
19.
Cell Death Dis ; 8(10): e3062, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28981092

RESUMO

Chemotherapy drugs interfere with cellular processes to generate genotoxic lesions that activate cell death pathways. Sustained DNA damage induced by these drugs can provoke mutations in surviving non-cancerous cells, potentially increasing the risk of therapy-related cancers. Ligation of death receptors by ligands such as TRAIL, and subsequent activation of extrinsic apoptotic pathways, also provokes mutations. In this study, we show that executioner caspase activation of the apoptotic nuclease CAD/DFF40 is essential for TRAIL-induced mutations in surviving cells. As exposure to chemotherapy drugs also activates apoptotic caspases and presumably CAD, we hypothesized that these pathways may also contribute to the mutagenesis induced by conventional chemotherapy drugs, perhaps augmenting the mutations that arise from direct DNA damage provoked by these agents. Interestingly, vincristine-mediated mutations were caspase and CAD dependent. Executioner caspases accounted for some of the mutations caused by the topoisomerase poisons doxorubicin and SN38, but were dispensable for mutagenesis following treatment with cisplatin or temozolomide. These data highlight a non-apoptotic role of caspases in mutagenesis mediated by death receptor agonists, microtubule poisons and topoisomerase inhibitors, and provide further evidence for a potential carcinogenic consequence of sublethal apoptotic signaling stimulated by anticancer therapies.


Assuntos
Aspartato Carbamoiltransferase/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Caspases/genética , Di-Hidro-Orotase/genética , Neoplasias/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Apoptose/efeitos dos fármacos , Camptotecina/administração & dosagem , Camptotecina/efeitos adversos , Camptotecina/análogos & derivados , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Dano ao DNA/efeitos dos fármacos , Dacarbazina/administração & dosagem , Dacarbazina/efeitos adversos , Dacarbazina/análogos & derivados , Doxorrubicina/administração & dosagem , Doxorrubicina/efeitos adversos , Ativação Enzimática/efeitos dos fármacos , Humanos , Irinotecano , Mutagênese/efeitos dos fármacos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Temozolomida , Vincristina/administração & dosagem , Vincristina/efeitos adversos
20.
Oncotarget ; 7(23): 33866-86, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27129149

RESUMO

Outcomes for patients diagnosed with the bone cancer osteosarcoma have not improved significantly in the last four decades. Only around 60% of patients and about a quarter of those with metastatic disease survive for more than five years. Although DNA-damaging chemotherapy drugs can be effective, they can provoke serious or fatal adverse effects including cardiotoxicity and therapy-related cancers. Better and safer treatments are therefore needed. We investigated the anti-osteosarcoma activity of IAP antagonists (also known as Smac mimetics) using cells from primary and metastatic osteosarcomas that arose spontaneously in mice engineered to lack p53 and Rb expression in osteoblast-derived cells. The IAP antagonists SM-164, GDC-0152 and LCL161, which efficiently target XIAP and cIAPs, sensitized cells from most osteosarcomas to killing by low levels of TNFα but not TRAIL. RIPK1 expression levels and activity correlated with sensitivity. RIPK3 levels varied considerably between tumors and RIPK3 was not required for IAP antagonism to sensitize osteosarcoma cells to TNFα. IAP antagonists, including SM-164, lacked mutagenic activity. These data suggest that drugs targeting XIAP and cIAP1/2 may be effective for osteosarcoma patients whose tumors express abundant RIPK1 and contain high levels of TNFα, and would be unlikely to provoke therapy-induced cancers in osteosarcoma survivors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteína 3 com Repetições IAP de Baculovírus/antagonistas & inibidores , Neoplasias Ósseas/tratamento farmacológico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cicloexanos/farmacologia , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Osteossarcoma/tratamento farmacológico , Pirróis/farmacologia , Tiazóis/farmacologia , Triazóis/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Animais , Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Compostos Bicíclicos Heterocíclicos com Pontes/toxicidade , Linhagem Celular Tumoral , Cicloexanos/toxicidade , Relação Dose-Resposta a Droga , Predisposição Genética para Doença , Células HEK293 , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Camundongos Knockout , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/secundário , Fenótipo , Pirróis/toxicidade , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína do Retinoblastoma/deficiência , Proteína do Retinoblastoma/genética , Transdução de Sinais/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Tiazóis/toxicidade , Transfecção , Triazóis/toxicidade , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA